Strongly Drazin inverse in rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

Continuity of the Drazin Inverse

In this paper we investigate the continuity of the Drazin inverse of a bounded linear operator on Banach space. Then as a corollary, among other things, we get the well known result of Campbell and Meyer ([1]) for the continuity of the Drazin inverse of square matrix.

متن کامل

Some additive results on Drazin inverse

Some additive perturbation results for Drazin inverses are given. In particular, a formula is given for the Drazin inverse of a sum of two matrices, when one of the products of these matrices vanishes. Some special applications of this are also considered. © 2001 Elsevier Science Inc. All rights reserved. AMS classification: 15A09; 15A23

متن کامل

Ela Perturbation of the Generalized Drazin Inverse

In this paper, we investigate the perturbation of the generalized Drazin invertible matrices and derive explicit generalized Drazin inverse expressions for the perturbations under certain restrictions on the perturbing matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2019

ISSN: 1846-3886

DOI: 10.7153/oam-2019-13-38